This threads explains how I've made my custom USB tyre pressure monitoring system by hacking this aftermarket kit bought on eBay.

[image: image1.jpg]

The first step was to detect the RF transmission encoding method used by the sensors.
To do this it would have been required a very expensive logic analyzer, but fortunately I found this nice program that allows to simulate it (albeit with many restrictions) through the LPT port.

So the first thing was to open the display/receiver unit provided with the kit and, after having identified the receiver, start analyzing the data sent by the sensors.

[image: image2.jpg]
- the display unit -
[image: image3.jpg]
- the display unit opened -
[image: image4.jpg]
- the receiver part -

After many samples, I deduced that the encoding method used from the system is a sort of PWM format (Differential Manchester) with dT (basic pulse element) time of about 50 μs and a bit period of 2xdT (about 100 μs).

[image: image5.jpg]
Discovered this, I’ve noticed that the whole data packet consist of 12 bytes (96 bits) organized in this way:

Preamble (16 bits) - The preamble is a series of 15 logic ‘1’ bits followed by a single logic ‘0’ bit (FFFE in hexadecimal), used to recognize the RF transmission as a valid TX message.

Transmitter ID (32 bits): The 32 transmitter ID bits are used to uniquely identify each sensor.

Pressure (8 bit): The tire pressure in kPa is obtained by multiplying the unsigned binary value of this byte by 2.5 and subtracting 100 (the atmospheric pressure) from the result.

Temperature (8 bits): The temperature in °C is obtained by subtracting 40 from this unsigned binary value.

Battery (8 bits): The 7 least significant bits indicates the battery condition as percentage (100 indicate the 100% of charge).

Sensor state (8 bits): The bits 0 and 1 of this byte contains the following information:
00 = Initial mode (Pressure is measured every 0.85 seconds and data is sent every 0.85 seconds. This sequence is repeated 256 times)
01 = Normal mode (Pressure is measured every 3.4 seconds and data is transmitted every 60 seconds)
10 = Pressure alert mode (Pressure is measured every 0.85 seconds and data is sent every 0.85 seconds. This sequence is repeated 256 times)
11 = Temperature alert mode (If the temperature exceeds 120°C, the sensor device enters into the same measurement and transmitting pattern as the pressure alert mode)

CRC (16 bits): Implement according to CCITT (0xFFFF) standards.

[image: image6.jpg]
After a relatively long time elapsed analyzing the data, the goal was to develop a device able to perform some operation such as:
- Learn the univocal sensor ID (like when a pairing is established between two Bluetooth devices). To be used during the first installation in the car or if a sensor is replaced with a new one.
- Read the data sent from every sensor and after an analysis to verify the validity (correct sensor ID and correct CRC), store them waiting a PC request. Since there is no way to know when a transmission happens, it is essential do this in real time.
- Handle the communication with the PC.
In addition, the device should have been easy to connect to the PC, small enough to be comfortably placed everywhere in the car and possibly be self-powered.
My choice was to use a PIC 18F2550, a Microchip microcontroller whit USB 2.0 compliant features, internal E2PROM memory and able to work with a clock oscillator up to 48 MHz.
The first attempt has been to use an SMD hybrid module operating on the frequency of 433,92 MHZ, but after various tests with some modules available on the market, I've noticed that the best result was with the original receiver embedded in the original display module provided with the TPMS kit, so I've decided to cut out it and use it in my hardware.

[image: image7.jpg]
- the display unit with the reciver part removed -

The schematic of the circuit is relatively simple and doesn't need further explanation, only a brief note about the transistor used to boost the signal coming out from the receiver, I've used a BC547 (European), but it isn't critical and can be replaced with an equivalent general purpose transistor like a 2N5818 (USA).

[image: image8.jpg]
- schematic -
[image: image9.jpg]
- copper side -

[image: image10.jpg]
- components side -

[image: image11.jpg]
- 3D view of the PCB -

[image: image12.jpg]
- the real device -
[image: image13.jpg]
- the real device (copper side) -

The most difficult (and funny) part of the whole work was the development of the firmware for the microcontroller that, as described above, it should have analyzed the data received from the sensors in real time and, at the same time, to handle the data exchange with the PC.
This has led at the creation of an USB HID device, a particular device that doesn't require a driver installation on the PC where it will be connected, like a keyboard or a PS/2 mouse.
A Plug & Play device that make easy the development of software (stand-alone programs or plug-ins for the various Front Ends available on this forum) without the aid of special APIs.

In order to facilitate the communication between the device and PC, I have developed a simple communication protocol.
Basically the device waits for a request from the PC (1 byte) and returns the information required (4 byte).
The following table shows the protocol details:

00H (0) Abort any pairing request (see below) --> Returns: Nothing

01H (1) Sensor 1 pairing request --> Returns: Nothing
02H (2) Sensor 2 pairing request --> Returns: Nothing
03H (3) Sensor 3 pairing request --> Returns: Nothing
04H (4) Sensor 4 pairing request --> Returns: Nothing
05H (5) Sensor 5 pairing request --> Returns: Nothing

10H (16) State of a pairing request --> Returns: X,0H,0H,0H
Where X is the number of the sensor to be paired, or 0 if the pairing has been completed.

21H (33) Sensor 1 data request --> Returns: P,T,B,S
22H (34) Sensor 2 data request --> Returns: P,T,B,S
23H (35) Sensor 3 data request --> Returns: P,T,B,S
24H (36) Sensor 4 data request --> Returns: P,T,B,S
25H (37) Sensor 5 data request --> Returns: P,T,B,S
Where:
P is the pressure in kPa obtained by multiplying the unsigned binary value of this byte by 2.5 and subtracting 100 (the atmospheric pressure) from the result.
T is the temperature in °C obtained by subtracting 40 from this unsigned binary value.
B is the battery condition, the first seven bits of this byte indicate the percentage of charge.
S is the operating state of the sensor, 00H is storage mode, 01H normal mode, 02H pressure allert mode or 03H for temperature allert mode.

As example of how to use this device in your code, you can download a RoadRunner plugin and its source code here.
It is also in development a plugin for Centrafuse (thanks Wolfgang). For more information, see here.

[image: image14.jpg]
- the final result-
Related downloads:
Schematic & PCB (created with Eagle CAD)
Parts list & PCB scaled 1:1 (PDF - Adobe Reader)
RoadRunner PlugIn (Bynary and source code)
Centrafuse PlugIn (Developed by Wolfgang)
You can test your receiver with this program outside RoadRunner, but remember that to "wake" the sensors, the pressure needs to be increased above 1.5 bars.

Basically the sensors operate in 5 different ways depending on the situation:

1. Storage mode: If the pressure is below 1.5 bar, pressure is measured every 60 seconds but no data is sent. If the pressure increases above 1.5 bars, the sensor shifts into the Initial mode.

2. Initial mode: This mode occurs if the pressure increases above 1.5 bar from Storage mode. In this mode, pressure is measured every 0.85 seconds and data is sent every 0.85 seconds. This sequence is repeated 256 times. After the sequence is repeated 256 times, the sensor shifts into the Normal mode only if pressure is above 1.5 bar. If the pressure is below 1.5 bar, the sensor will shift into the Storage mode.

3. Normal mode: Pressure is measured every 3.4 seconds and data is transmitted every 60 seconds. If the measured pressure differs by more than 200 mbar from the reference taken every 60 seconds, the sensor enters a Pressure Alert mode.

4. Pressure Alert mode: It is the same measurement and transmitting pattern as the Initial mode.

5. High Temp Alert mode: If the temperature exceeds 120°C, the sensor device enters into the same measurement and transmitting pattern as the Initial mode.

Those values are the last data received from the sensors, and they come from the internal E2PROM of the PIC.

After programming the PIC, I make a small test to be sure that it works as expected, but before to ship it, I erase always the data stored during the test in the internal E2PROM.

However you can try to erase again all the data stored in the PIC yourself and then perform again the learning procedure.

This is the procedure:

Connect the PIC to an USB port of your PC and start the new program (TPMS Doctor).

Press and hold on the shift button on your keyboard then clik on my avatar in the bottom left hand side of the window, two new buttons will appear.

The firs button (Master Reset) completely erase all data stored in the PIC memory (sensor IDs and data received), the second one (Data Reset) erase only the data received (pressure, temperature, etc) but not the learned sensor IDs.

Just to do a bit of clarity on the topic:

Each sensor has a unique internal code (ID) 32 bit long (something like: 12-F5-A3-BC) and doesn't exist two sensors in the world with the same code.

This code is "written" internally in the sensor and can not be changed in any way.

The numbering from 1 to 5 are purely indicative, and has the unique purpose to provide a simple reference to know in which tire has been installed each sensor.

When you perform the "learning procedure", by using the "Configuration Tool" provided with the RoadRunner plugin or by the Centrafuse plugin, the PIC microcontroller stores the sensor ID inside its E2PROM (a non volatile memory), so it is a PIC internal process that doesn't involve in any way the PC.

Also, the device (PIC) will not save any identical sensor ID, so it is possible to replace any sensor with a new one, but not with a sensor already stored, this is just to prevent to store the same sensor in two different positions.

However, if necessary, you can erase the PIC memory through "TPMS Doctor" and repeat the whole "learnig procedure" (if you don't know how to do it, I will explain).
You can build a simple 433.92 MHz antenna with a thin 50Ω coaxial cable as shown in this picture:

[image: image15.jpg]
As for the signal strength, I had initially thought to it, but since the data packet sent from the sensors is too fast (about 11,2 ms) there isn't sufficient time to perform a reliable reading, also it would be necessary to modify the 3rdEye receiver to pickup the signal strength (i think it is available on the pin 26 of the TDA5200) and make an A/D conversion of this last.

You have to remove the original antenna and to solder the center core of the coaxial cable, you need also to solder the shield of the coaxial cable to GND, for example on JP3.

About the master reset, it is normal, now you need to perform again the learnig procedure for each sensor.
Have you tried using RRTMS 1.40 to learn the sensors? You don't have to use the CF plug-in to program, in my experience it is still quite buggy. RRTMS works much better (not to mention it has had many more revisions) when it comes to learning sensors. Once the sensors are learned the data is stored to EEPROM on the board itself so you can see the data on CF after they are learned, you can even switch computers and it should still work identically. Also another thing to look out for is distance. Too close is no good and being to far away doesn't do much good either, I would say about 3-4 feet (1 meter) has been the sweet spot during my testing but I have had the sensor work from as far as 10 meters (outside, open field, using a pesticide sprayer). Also when I tried to put the reciever right next to the sensor when learning the sensor did not want to learn 9 out of 10 times. Also if you haven't already mounted the sensors then it might be best to purchase an inexpensive pesticide sprayer to do the learning so you don't have to keep inflating and deflating your tires. I hope this helps solve some issues...

Well I tried learning my sensors again using RRTMS 1.40. Had about 10psi on the tire, click the tire to learn, then filled it to about 45 psi and it would still be blinking.

Don't know if by doing the antenna swap made it more helpful. I'm wondering if maybe we can find a high gain good antenna, put it in a good spot and run a coax feed to the receiver.

Maybe something like this http://search.digikey.com/scripts/Dk...3-MHW-RPS-S-ND

Well, I ordered one of these so I'm gonna see how it works out.

[image: image16.jpg]

[image: image17.jpg]
The original reciver uses a 433.92 MHz Helical antenna and has about 4.5 turns (6.5 inches in length). From your questions it sounds like you are trying to replace the antenna on my board, so I will give you some insider information. [image: image18.png]. There are three types of antennas you can use for this application, Rigid Monopole, Helical, or Flexible Monopole. Rigid Monopole is like the radio antenna that sticks out of your car and it has the best reception for the three but is also not practical for this application as you require a 6.5 (+/- .25) inch antenna to stick out from the board. Option 2, the helical antenna is the next best option to the rigid monopole but in my case I was not able to find one that would fit on the original board design (Revision 2 will have a new style helical antenna on it as the board is being modified to fit it). Last but not least is your flexible monopole which is nothing but a simple non-sheilded wire (less than 8 guage). In any case the reception of the reciver is far superior than the original 3rd eye so using the flexible monopole antenna doesn't make a difference. Well I hope this little tid bit helps you out.

@ Blues: Yep, we can use anything that will work, approximately 1/4-wavelength length for optimum results.

Wavelength for 433.92Mhz is lambda=Speed of Light/fequency, thus 299,792,458/433.92Mhz = 690,893mm.

297,792,458meter/sec = 187,370miles/sec (approximate)

1/4 Wave is then 690.893/4 = 172,723mm

or, if your imperially declined, 172,723/25.4 = 6.80"

So, as long as we stick to the above rule (for optimum results), we can use any antenna tuned for this frequency.

Here's a nice one at Farnell's.

All we need to do is run a short piece of 50ohm coax from the antenna to the pcb, and make sure the ground (outer screen) is connected to the pcb ground - thanx for leaving the grounding-point on the pcb, Alok - nice touch - this gives us a few options!

edit: @ Blues: Nice calculator [image: image19.png]I compiled my post, not seeing yours, would have saved me the manual calculations. Well, Alok's formula possibly includes the "shortening factor" when calculating antenna-lengths, but, it doesn't have a real effect at high frequencies.

So around 6.5" - 6.80" should be optimum.

I think I know why you use 6.5 inch rather than 6.8 inch.
6.8 inch is of course theoretically the optimal length, but in pratice the optimal length of antennas is slightly shorter than the theoretical optimal length, "to account for the difference in the velocity of wave propagation in wire as opposed to the same wave in free space", to quote Wikipedia. I had forgotten about that for a moment.

http://en.wikipedia.org/wiki/Dipole_...haracteristics
Quote:

A half-wave dipole is cut to length according to the formula [image: image20.png][ft], where l is the length in feet and f is the center frequency in MHz [1]. This is because the impedance of the dipole is resistive pure at about this length. The metric formula is [image: image21.png][m], where l is the length in meters. The length of the dipole antenna is about 95% of half a wavelength at the speed of light in free space.

The magic numbers above are derived from a one Hz wavelength which is the distance that light radio travels in one second. For English that is 186,282 miles times 5280 feet per mile. To convert to metric multiply the previous total by 12 inches per foot and then, by definition, multiply that by 2.54 cm per inch. Divide this number by 100 to convert this length to meters. Then divide the result by one million to account for MHz rather than hertz. This will give a number which must be divided by two for a dipole antenna. To correct for resistance and impedance multiply the dipole wavelength by about 95% to account for the difference in the velocity of wave propagation in wire as opposed to the same wave in free space. If the wire velocity is known, that value should be used to get the magic numbers of 468 feet or 142.65 metric. All that is left is to divide by the desired frequency as measured in MHz to obtain the length of the antenna element.

For a quater-wave antenna I guess the optimal length must be half of this.

468 / 2 / 433.92 * 12 = 6.47 inch
or
142.65 / 2 / 433.92 = 0.164 m

I also found an online calculator to calculate the pratical rahter than the theoretically length for quater-wave antennas and it gives the same result (16.4 cm or 6.47 inch): http://www.csgnetwork.com/antennagpcalc.html
This website use the formula l = 71.3232 / f ;where l is the length in meters
[image: image22.jpg]
[image: image23.jpg]
